

A Constrained Minimization Problem With Integrals on the Entire Space

Orlando Lopes

— Dedicated to the memory of Antonio Gilioli (1945-1989)

Abstract. In this paper we consider the question of minimizing functionals defined by improper integrals. Our approach is alternative to the method of concentration-compactness and it does not require the verification of strict subaddivity.

I. Introduction

In this paper we study the problem of minimizing

$$V(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\operatorname{grad} u(x)|^2 dx + \int_{\mathbb{R}^N} F(u(x)) dx$$

subject to

$$I(u) = \int_{\mathbb{R}^N} G(u(x)) dx = \lambda \neq 0 \ .$$

This minimization problem is considered in the space $H^1(\mathbb{R}^N)$; under certain growth assumptions V(u) and I(u) are well defined smooth functionals on $H^1(\mathbb{R}^N)$.

This problem has been studied by many authors in connection with the existence of solution of a semilinear elliptic equation (or system) and/or the existence and stability of special solutions of some evolution equation. References [1] to [8] are a partial list of papers about this topic.

As far as the convergence of minimizing sequences is concerned, our approach is based on Theorem I which states, using the terminology adopted in [3], that dichotomy never occurs in the problem above; so,

all we have to worry about is to avoid vanishing minimizing sequences.

Our growth assumptions are much more restrictive than in [3], for instance (because we assume two sided growth conditions on F(u), G(u) and their first and second derivatives), but we allow G(u) to change sign and not to be even.

II. Statement of the Results

Let V(u) and I(u) be as above. For $N \geq 2$ we set $l(N) = \frac{2N}{N-2}$ and denote by $M = \{u \in H^1(\mathbb{R}^N) : I(u) = \lambda\}$ the admissible set (which is supposed to be non empty) and by f(u) and g(u) the derivatives of F(u) and G(u). We rewrite F(u) and G(u) in the form $F(u) = mu^2 + F_1(u)$ and $G(u) = m_0u^2 + G_1(u)$ and we make the following assumptions:

H1. $F_1(u)$ and $G_1(u)$ are C^2 functions with $F_1(0) = G_1(0) = 0 = F'_1(0) = G'_1(0)$ and for some constant k and $0 < q \le p < l(N)$ we have

$$|F_1''(u)|, |G_1''(u)| \le k(|u|^{q-2} + |u|^{p-2});$$

H2. V is bounded below on M and any minimizing sequence is bounded in $H^1(\mathbb{R}^N)$;

H3. if $u \in H^1(\mathbb{R}^N)$ and $u \not\equiv 0$, then $g(u(\cdot)) \not\equiv 0$.

Remarks.

- 1. If N = 1 we assume $F_1(u)$ and $G_1(u)$ are C^2 functions satisfying $F_1(0) = F_1'(0) = F_1''(0) = 0 = G_1(0) = G_1'(0) = G_1''(0)$.
- **2.** Assumption H_3 is satisfied if $g(u) \neq 0$ for $u \neq 0$ and small.
- **3.** for N=3 we give two examples verifying assumption H_2 :
- a) $G(u) = u^2$ and $\lim_{u \to +\infty} F_-(u)/|u|^{\frac{10}{3}} = 0$, where $F_-(u)$ is the negative part of F(u); this type of growth condition has also appeared in [3], part II, page 240; the fact that H_2 is satisfied is a consequence of the interpolation inequality $|u|_{L_p} \leq C|\operatorname{grad} u|_{L_2}^a|u|_{L_2}^{1-a}$ with $a = \frac{3}{2} \frac{3}{p}$. Since we need ap < 2 we should ask for $p < \frac{10}{3}$ but the fact the limit above is zero is sufficient for

$$\int_{\mathbb{R}^3} |\operatorname{grad} u(x)|^2 dx \text{ to dominate } \int_{\mathbb{R}^3} F(u(x)) dx.$$

b) $G(u) = u^3 + u^5$ and $F(u) = u^2 + u^4$.

Under assumptions H1, H2 and H3 our results are the following:

Theorem I. If u_n is a minimizing sequence and u_n converges weakly in $H^1(\mathbb{R}^N)$ to $u \not\equiv 0$, then u_n converges to u strongly in $L_r(\mathbb{R}^N)$, $2 < r < \ell(N)$ (for N = 1 this interval becomes $2 < r \leq \infty$).

In order to analyze the precompactness of minimizing sequences we have to consider several cases.

First case. $m_0 > 0$ and $\lambda > 0$. In this case the constraint gives

$$\int_{\mathbb{R}^N} u^2(x) dx = -\frac{1}{m_0} \int_{\mathbb{R}^N} G_1(u(x)) dx + \frac{\lambda}{m_0}$$

and so, replacing this expression in V(u) we get

$$V(u) = rac{1}{2} \int_{\mathbb{R}^N} \left| \operatorname{grad} u(x) \right|^2 \! dx + \int_{\mathbb{R}^N} \overline{F}(u(x)) dx + rac{m \lambda}{m_0}$$

where $\overline{F}(u) = F_1(u) - \frac{m}{m_0} G_1(u)$. If we drop the constant $\frac{m\lambda}{m_0}$ and we keep the notation F(u) for $\overline{F}(u)$ we get V(u) of the same form and m = 0.

Theorem II. Assume $m_0 > 0$, $\lambda > 0$ and m = 0. Then inf $V(u) \leq 0$; moreover, any minimizing sequence is precompact in $H^1(\mathbb{R}^N)$ modulo translation in the x variable if and only if V(u) < 0; in this case, the Lagrange multiplier is different from zero.

Second case. $m_0 > 0$ and $\lambda < 0$. Arguing as in the previous case, we may assume m = 0.

Theorem III. Assume $N \geq 2$, $m_0 > 0$, $\lambda < 0$ and m = 0. Then modulo translation in the x variable any minimizing sequence is precompact in $H^1(\mathbb{R}^N)$.

Remark. For the case N=1 see the remark following the proof of Theorem IV.

Third case. $m_0 = 0$ and m > 0.

Theorem IV. Assume $m_0 = 0$ and m > 0. Then modulo translation in the x variable any minimizing sequence is precompact in $H^1(\mathbb{R}^N)$.

Remark. In the case $m_0 = 0$, the condition $m \ge 0$ is necessary for the existence of a minimizer. If m = 0 (the zero mass case) the proof

of theorem V shows that, modulo translation in the x variable, any bounded minimizing sequence is precompact with respect to the norm $|\operatorname{grad} u|_{L^2} + |u|_{L^r}$, for some r, $2 < r < \ell(N)$; however, since the L_2 norm of u is absent in V(u) and I(u), we cannot expect to have boundedness of a minimizing sequence in the $H^1(\mathbb{R}^N)$ norm. This means that we have to change the space where we want to solve our minimization problem in the case $m = m_0 = 0$ as in [4] for instance.

Before passing to the proof of theorems I to IV, we state a few propositions which will be very useful.

The following statement known as Lieb's lemma [10] will play a crucial role in the proof.

Lemma 1. Let u_n be a bounded sequence in $H^1(\mathbb{R}^N)$ satisfying the following condition: there are $\varepsilon > 0$, $\delta > 0$ and n_0 such that meas $(\{x : |u_n(x)| \ge \delta\}) \ge \varepsilon$ for $n \ge n_0$. Then there is a sequence $d_n \in \mathbb{R}^N$ such that if we let $v_n(x) = u_n(x + d_n)$ then $v_{nj} - v \ne 0$ in $H^1(\mathbb{R}^N)$, for some subsequence v_{nj} .

We need also the following version of Lieb's lemma.

Lemma 2. Let u_n be a bounded sequence in $H^1(\mathbb{R}^N)$ satisfying the following condition: there are $\varepsilon > 0$, $\delta > 0$ and n_0 and a sequence R_n converging to $+\infty$ such that meas $(\{x : |x| \ge R_n, |u_n(x)| \ge \delta\}) \ge \varepsilon$ for $n \ge n_0$. Then there is a sequence $d_n \in \mathbb{R}^N$ with $|d_n| \to +\infty$ such that if we let $v_n(x) = u_n(x + d_n)$ then $v_{nj} \to v \not\equiv 0$ in $H^1(\mathbb{R}^N)$, for some subsequence v_{nj} .

The growth assumption H1 implies that the functionals V, $I: H^1(\mathbb{R}^N) \to \mathbb{R}$ are of class C^2 with first and second derivatives uniformly bounded on bounded sets and uniformly continuous on bounded sets.

Now if u(t,x) is a C^2 curve satisfying

$$\int_{\mathbb{R}^N} G(u(t,x)) = \lambda$$

then

$$\int_{\mathbb{R}^N} g(u(t,x)) \dot{u}(t,x) dx = 0$$

and

$$\int_{\mathbb{R}^N} g'(u(t,x)) \dot{u}^2(t,x) dx + \int_{\mathbb{R}^N} g(u(t,x)) \ddot{u}(t,x) dx = 0.$$

So, if u(0, x) = u(x), the admissible \dot{h} and \ddot{h} are those satisfying

$$\int_{\mathbb{R}^N} g(u) \dot{h} dx = 0 \quad \text{and} \quad \int_{\mathbb{R}^N} g'(u) \dot{h}^2 dx + \int_{\mathbb{R}^N} g(u) \ddot{h} dx = 0.$$

We need the converse (with some uniformity) for the whole sequence u_n .

Lemma 3. Let u_n be a minimizing sequence converging weakly in $H^1(\mathbb{R}^N)$ to $u \not\equiv 0$ and h_n and \ddot{h}_n be bounded sequences in $H^1(\mathbb{R}^N)$ satisfying

$$\int_{\mathbb{R}^N} g(u_n(x)) h_n(x) dx = 0$$

and

$$\int_{\mathbb{R}^N} [g'(u_n(x))h_n^{\cdot 2}(x) + g(u_n(x))h_n^{\cdot }(x)]dx = 0.$$

Then there is a $\delta_0 > 0$ such that for n large there is a sequence of C^2 functions $h_n: (-\delta_0, \delta_0) \to H^1(\mathbb{R}^N)$ satisfying: i) $u_n + h_n(t)$ is admissible; ii) $h_n(0) = 0$; $h_n^{\cdot}(0) = h_n^{\cdot}$, $h_n^{\cdot}(0) = h_n^{\cdot}$; iii) $h_n(t) - h_n(0)$, $h_n^{\cdot}(t) - h_n^{\cdot}(0)$, $h_n^{\cdot}(t) - h_n^{\cdot}(0)$ go to zero as t goes to zero, uniformly on n.

Proof. From assumption H3 we know $g(u(x)) \neq 0$. If $\psi(x)$ is a, say, smooth function with compact support such that $\int_{\mathbb{R}^N} g(u(x))\psi(x)dx \neq 0$, we see that lemma 4 is a consequence of the application of the implicit function theorem to the function

$$H_n(\sigma, t) = \int_{\mathbb{R}^N} G(u_n + \sigma \psi + th_n^{\cdot} + \frac{t^2}{2}h_n^{\cdot \cdot})dx - \lambda$$

at (0, 0) provided we define $h_n(t) = u_n + \sigma(t)\psi + t\dot{h}_n + \frac{t^2}{2}h_n^{..}$.

Lemma 4. Let u_n be a minimizing sequence converging weakly in $H^1(\mathbb{R}^N)$ to $u \not\equiv 0$. Then

1) $|V'(u_n)| \to 0$ as $n \to +\infty$, the norm of derivative being calculated on the admissible elements;

2) if for some $\delta_0 > 0$, $h_n : (-\delta_0, \delta_0) \to H^1(\mathbb{R}^N)$ is a sequence of C^2 admissible curves such that $h_n(0) = u_n$, $\dot{h}_n(0)$ and $\ddot{h}(0)$ are uniformly bounded (the dots mean derivative) and $h_n(t) - h_n(0)$, $\dot{h}_n(t) - \dot{h}_n(0)$, $\ddot{h}_n(t) - \ddot{h}_n(0)$, go to zero as $t \to 0$, uniformly on n, then $\liminf_{t \to 0} \frac{d^2}{dt^2} V(h_n(t))|_{t=0} \ge 0$.

Lemma 4 has been used in [11] and it has a sort of "calculus" proof. We show the part concerning $|V'(u_n)| \to 0$ because the other is similar.

Proof of part 1 of lemma 3. By contradiction, if it was false then, passing to a subsequence if necessary, there would exist \dot{h}_n and $\eta > 0$ with $|\dot{h}_n|_{H^1(\mathbb{R}^N)} = 1$, \dot{h}_n admissible for u_n , such that $V'(u_n)\dot{h}_n \leq -\eta$. We define $\ddot{h}_n = c_n\psi$ where ψ is a smooth function with compact support satisfying

$$\int_{\mathbb{R}^N} g(u(x))\psi(x)dx \neq 0$$

and c_n is chosen in such way that the compatibility condition for \ddot{h}_n in the previous lemma is satisfied. Let $h_n: (-\delta_0, \delta_0) \to H^1(\mathbb{R}^N)$ be the curve whose existence is guaranteed by that lemma. Then

$$\begin{split} V(u_n + h_n(t)) - V(u_n) &= \int_0^t V'(u_n + h_n(s)) \dot{h}_n(s) ds = t V'(u_n) \dot{h}_n + \\ &+ \int_0^t (V'(u_n + h_n(s)) - V'(u_n)) \dot{h}_n(s) ds + \\ &+ \int_0^t V'(u_n) (\dot{h}_n(s) - \dot{h}_n) ds. \end{split}$$

Let $t_0 > 0$ be a fixed (independent of n) number such that for $t = t_0$ the absolute value of the last two integrals are less than $\frac{\eta t_0}{4}$; then we would have

$$V(u_n + h_n(t_0)) - V(u_n) \le -\frac{\eta t_0}{2},$$

a contradiction, and so part 1 of lemma 4 is proved.

Let u be a generic admissible element in $H^1(\mathbb{R}^N)$. In order to compute |V'(u)| we have to maximize

$$V'(u)\varphi = \int_{\mathbb{R}^N} \langle \operatorname{grad} u, \operatorname{grad} \varphi \rangle dx + \int_{\mathbb{R}^N} f(u)\varphi dx$$

subject to

$$\int_{\mathbb{R}^N} g(u) \varphi dx = 0 \quad \text{ and } \quad \int_{\mathbb{R}^N} (|\operatorname{grad} \varphi|^2 + \varphi^2) dx = 1.$$

If $\overline{\varphi}$ is the place where the maximum is achieved, there are numbers α and γ such that

$$\int_{\mathbb{R}^{N}} (\langle \operatorname{grad} u, \operatorname{grad} \varphi \rangle + f(u)\varphi + \alpha g(u)\varphi +
+ \gamma \langle \operatorname{grad} \overline{\varphi}, \operatorname{grad} \varphi \rangle + \gamma \overline{\varphi}\varphi) dx = 0 , \forall \varphi \in H^{1}(\mathbb{R}^{N}).$$
(1)

In particular

$$-\Delta(u + \gamma\overline{\varphi}) + f(u) + \alpha q(u) + \gamma\overline{\varphi} = 0.$$
 (2)

If we set $\varphi = \overline{\varphi}$ in (1) we get $V'(u)\overline{\varphi} = -\gamma$ and this shows that $|V'(u)| = -\gamma$.

Moreover, if h(0) = 0 and \dot{h} and \ddot{h} are admissible, we have

$$\begin{split} \frac{d^2}{dt^2} V(u+h(t)|_{t=0} &= \\ &= \int_{\mathbb{R}^N} (|\operatorname{grad} \dot{h}|^2 + (f'(u) + \alpha g'(u)) \dot{h}^2 - \gamma \langle \operatorname{grad} \overline{\varphi}, \operatorname{grad} \ddot{h} \rangle - \gamma \overline{\varphi} \ddot{h}) dx. \end{split} \tag{3}$$

Proof of theorem I. We give the proof for $N \geq 2$. The case N = 1 requires minor modifications.

Let u_n be a minimizing sequence, $u_n \to u$ in $H^1(\mathbb{R}^N)$, $u \not\equiv 0$. From lemma 3 and equations (1) and (2) we know that there are sequences $\alpha_n, \gamma_n, \overline{\varphi}_n$ with $|\overline{\varphi}_n|_{H^1(\mathbb{R}^N)} = 1$ such that

$$\int_{\mathbb{R}^{N}} (\langle \operatorname{grad} u_{n}, \operatorname{grad} \varphi \rangle + f(u_{n})\varphi + \alpha_{n} g(u_{n})\varphi + \gamma_{n} \langle \operatorname{grad} \overline{\varphi}_{n}, \operatorname{grad} \varphi \rangle + + \gamma_{n} \overline{\varphi}_{n} \varphi) dx = 0 \quad \text{for any } \varphi \in H^{1}(\mathbb{R}^{N})$$
(1')

and

$$-\Delta(u_n + \gamma_n \overline{\varphi}_n) + f(u_n) + \alpha_n g(u_n) + \gamma_n \overline{\varphi}_n = 0$$
 (2')

Step 1. α_n is bounded. In fact, we know that $\gamma_n \to 0$. Suppose that for some subsequence, for which we keep the same notation, we have $|\alpha_n| \to \infty$. If we divide (1') by α_n and let $n \to +\infty$ keeping φ fixed, we get

$$\int_{\mathbb{R}^N} g(u(x))\varphi(x)dx = 0$$

for any φ in $H^1(\mathbb{R}^N)$ and this contradicts the assumption H3 and this proves step 1.

Passing to a subsequence if necessary we can assume that $\alpha_n \to \alpha$.

Step 2. For any $\varepsilon > 0$ and $\delta > 0$ there are \mathbb{R} and n_0 such that meas $\{x : |x| \geq R, |u_n(x)| \geq \delta\} < \varepsilon$ for $n \geq n_0$.

If not, there are $\varepsilon > 0$ and $\delta > 0$ and a sequence $R_n \to +\infty$ such that meas $\{x : |x| \geq R_n, |u_n(x)| \geq \delta\} \geq \varepsilon$ for infinitely many n. By lemma 2 and passing to a subsequence if necessary, we know that there is a sequence $d_n \in \mathbb{R}^N$, $|d_n| \to +\infty$, such that $v_n(x) = u_n(x + d_n) \to v \not\equiv 0$ and so, from (1'), we conclude that u and v satisfy

$$-\Delta u + f(u) + \alpha g(u) = 0$$
$$-\Delta v + f(v) + \alpha g(v) = 0$$

Due to the growth assumptions on f and g, u and v are continuous and tend to zero at infinity.

Since not all derivatives $\frac{\partial u}{\partial x_i}$ are identically zero, if we let

$$\mu = f'(0) + \alpha g'(0), \ p(x) = f'(u(x)) + \alpha g'(u(x)) - \mu,$$

we see that the equation

$$-\Delta w + (p(x) + \mu)w = 0$$

has $\frac{\partial u}{\partial x_i}$ as a nontrivial solution.

Before continuing, we show that $\mu \geq 0$; in fact, let ψ a smooth function with compact support such that

$$\int_{\mathbb{R}^N} g(u(x))\psi(x)dx \neq 0$$

and let \dot{h} be any function in $H^1(\mathbb{R}^N)$ such that

$$\int_{\mathbb{R}^N} g(u(x))\dot{h}(x)dx = 0;$$

we define $\dot{h}_n = \dot{h} + \varepsilon_n \psi$ and we choose ε_n such that

$$\int_{\mathbb{R}^N} g(u_n(x))\dot{h}_n(x)dx = 0$$

and \ddot{h}_n admissible as in the proof of lemma 4. Using that lemma, equation (3), we conclude that

$$\frac{d^2}{dt^2}V(u+h(t))_{t=0} = \int_{\mathbb{R}^N} [|\operatorname{grad} \dot{h}(x)|^2 + (f'(u)(x)) + \alpha g'(u(x))\dot{h}^2] dx \ge 0,$$

for any \dot{h} such that

$$\int_{\mathbb{R}^N} g(u(x))\dot{h}(x)dx = 0.$$

As a consequence the spectrum of the linear operator

$$Lh = -\Delta h + (f'(u(x)) + \alpha g'(u(x))h$$

cannot have two distinct points μ_1 , μ_2 in the negative half-line because, otherwise, there would be two sequences φ_n , ψ_n , $|\varphi_n|_{L_2} = 1$, $|\psi_n|_{L_2} = 1$, such that $v_n = L\varphi_n - \mu_1\varphi_n$ and $w_n = L\psi_n - \mu_2\psi_n$ tend to zero in $L_2(\mathbb{R}^N)$, and choosing a_n and b_n in such way that $a_n^2 + b_n^2 = 1$ and $k_n = a_n\varphi_n + b_n\psi_n$ is admissible, we would have $\langle Lk_n, k_n \rangle < 0$ for n large, and this is a contradiction. Noticing that $p(x) \to 0$ as $|x| \to +\infty$, we conclude from theorem 5.7 page 304 in [12] that the half line $[\mu, +\infty]$ is contained in the spectrum of L; since we have showed that the spectrum of L cannot have two distinct points on the half-line $(-\infty, 0)$ we must have $\mu \geq 0$.

Next we claim that there are ψ_1 and $\beta_1 > \mu$ such that

$$\int_{\mathbb{R}^N} \psi_1^2 dx = 1 \quad \text{and} \quad -\Delta \psi_1 + (p(x) + \beta_1)\psi_1 = 0.$$

Similarly, there are ψ_2 and $\beta_2 > \mu$ such that

$$\int_{\mathbb{R}^N} \psi_2^2 dx = 1 \quad \text{and} \quad -\Delta \psi_2 + (q(x) + \beta_2)\psi_2 = 0,$$

where

$$q(x) = f'(v(x)) + \alpha g'(v(x)) - \mu.$$

The existence of ψ_1 and ψ_2 , of ψ_1 for instance, is obtained by minimizing

$$W(\psi) = \int_{\mathbb{R}^N} (|\operatorname{grad} \psi(x)|^2 + p(x)\psi^2(x)) dx \quad \text{under} \quad \int_{\mathbb{R}^N} \psi^2(x) dx = 1 \ .$$

In order to see that this minimum is attained we have to notice that

$$W\left(\frac{\partial u}{\partial x_1}\right) = -\mu \int_{\mathbb{R}^N} \left(\frac{\partial u}{\partial x_1}\right)^2 dx \le 0$$

and then W assumes negative values because, otherwise, $W(\psi)$ would have a minimum at both $\frac{\partial u}{\partial x_1}$ and $\left|\frac{\partial u}{\partial x_1}\right|$ and this is a contradiction (by the unique continuation principle). So, the infimum ℓ of $W(\psi)$ on the admissible set is strictly negative. Let (ψ_n) be a minimizing sequence converging weakly in $H^1(\mathbb{R}^N)$ to ψ . Since

$$\int_{\mathbb{R}^N} p(x) \psi_n^2(x)$$
 converges to $\int_{\mathbb{R}^N} p(x) \psi^2(x) dx$

(because p(x) is continuous, tends to zero at infinite and $\psi_n \longrightarrow \psi$ strongly in $L_2^{loc}(\mathbb{R}^n)$) we see that $W(\psi) \leq \ell < 0$. But if we had

$$\int_{\mathbb{R}^N} \psi^2(x) < 1,$$

defining $\widetilde{\psi} = c\psi, c > 0$, such that

$$\int_{\mathbb{R}^N} \widetilde{\psi}^2(x) dx = 1$$

we would have c > 1 and $W(\widetilde{\psi}) = c^2 W(\psi) < \ell$, a contradiction. So, we conclude that W has a minimum at ψ and the rest is trivial because $\frac{\partial u}{\partial x_1}$ changes sign.

Notice that $\psi_1(x)$ and $\psi_2(x)$ are continuous and tend to zero as $|x| \to +\infty$; in particular, $\psi_1(x) \psi_2(x-d_n)$ tends to zero in $L_s(\mathbb{R}^N)$ as n tends to $+\infty$, for $1 \le s \le \infty$.

Next define $\dot{h}_n(x)=a_{1,n}\psi_1(x)+a_{2,n}\psi_2(x-d_n)$ imposing that $a_{1,n}^2+a_{2,n}^2=1$ and

$$\int_{\mathbb{R}^N} g(u_n(x)) \dot{h}_n(x) dx = 0;$$

notice that

$$\int_{\mathbb{R}^N} \dot{h}_n^2(x) dx \to 1$$

because $\int_{\mathbb{R}^N} \psi_1(y) \psi_2(y-d_n) dy \to 0$.

For $h_n^{\cdot \cdot}$ we make the choice $h_n^{\cdot \cdot} = c_n \psi$ where ψ is as in lemma 3 and c_n is chosen to satisfy

$$\int_{\mathbb{R}^{N}} [g'(u_{n}(x))h_{n}^{2}(x) + c_{n}g(u_{n}(x))\psi(x)]dx = 0$$

Let $h_n(t)$, $|t| < \delta_0$, be the sequence whose existence is guaranteed by lemma 3; then

$$\frac{d^2}{dt^2}V(u_n + h_n(t)|_{t=0} = \int_{\mathbb{R}^N} (|\operatorname{grad} \dot{h}_n|^2 + (f'(u_n(x)) + \alpha g'(u_n(x))\dot{h}_n^2(x))dx - \gamma_n \int_{\mathbb{R}^N} (\langle \operatorname{grad} \overline{\varphi}_n, \operatorname{grad} \ddot{h}_n \rangle + \overline{\varphi}_n \ddot{h}_n)dx.$$

This last term tends to zero and the first is equal to

$$\int_{\mathbb{R}^{N}} (a_{1,n}^{2} |\operatorname{grad} \psi_{1}(x)|^{2} + 2a_{1,n}a_{2,n} \langle \operatorname{grad} \psi_{1}(x), \operatorname{grad} \psi_{2}(x - d_{n}) \rangle +
+ a_{2,n}^{2} |\operatorname{grad} \psi_{2}(x - d_{n})|^{2} dx +
+ \int_{\mathbb{R}^{N}} (f'(u_{n}(x)) + \alpha g'(u_{n}(x))(a_{1,n}^{2} \psi_{1}^{2}(x) +
+ 2a_{1,n}a_{2,n}\psi_{1}(x)\psi_{2}(x - d_{n})a_{2,n}^{2} \psi_{2}^{2}(x - d_{n})) dx .$$
(4)

The mixed terms in (4) go to zero and the rest is equal to

$$\begin{split} &\int_{\mathbb{R}^N} a_{1,n}^2(-p(x)-\beta_1+f'(u_n(x))+\alpha g'(u_n(x))\psi_1^2(x)dx+\\ &+\int_{\mathbb{R}^N} a_{2,n}^2(-q(x)-\beta_2+f'(v_n(x))+\alpha g'(v_n(x))\psi_2^2(x)dx=\\ &=a_{1,n}^2\int_{\mathbb{R}^N} (\mu-\beta_1+f'(u_n(x))+\alpha g'(u_n(x))-f'(u(x))-\alpha g'(u(x))\psi_1^2(x)dx+\\ &+a_{2,n}^2\int_{\mathbb{R}^N} (\mu-\beta_2+f'(v_n(x))+\alpha g'(v_n(x))-f'(v(x))-\alpha g'(v(x))\psi_2^2(x)dx. \end{split}$$

We claim that the first integral tends to $\mu - \beta_1$ and the second to $\mu - \beta_2$. Let us look, for instance, at the term $\int_{\mathbb{R}^N} (f'(u_n(x)) - f'(u(x))\psi_1^2(x)dx$. Define h(u) = f'(u), $h_1(u) = h(u)$ for $|u| \leq 1$ and zero otherwise, $h_2(u) = h(u)$ for |u| > 1 and zero otherwise. From growth assumption, we have $|h_1(u)| \leq \text{const.}$ |u| and $|h_2(u)| \leq \text{const.}$ $|u|^{p-1}$; if r is large, the term $\int_{|x|\geq r} (h_1(u_n(x)) - h_1(u(x)))\psi_1^2(x)dx$ is small by Holder's inequality because $h_1(u_n) - h_1(u)$ is bounded in $L_2(\mathbb{R}^N)$ and ψ_1^2 belongs to $L_2(\mathbb{R}^N)$. On the other hand, for r fixed, the term

 $\int_{|x| \le r} (h_1(u_n(x)) - h_1(u(x))) \psi_1^2(x) dx$ tends to zero because $h_1(u_n) \to h_1(u)$ in $L_1^{loc}(\mathbb{R}^N)$ and ψ_1^2 belongs to $L_{\infty}(\mathbb{R}^N)$. This shows

$$\int_{\mathbb{R}^N} (h_1(u_n(x)) - h_1(u(x))) \psi_1^2(x) dx$$

tends to zero. The term

$$\int_{\mathbb{R}^{N}} (h_{2}(u_{n}(x)) - h_{2}(u(x))\psi_{1}^{2}(x)dx$$

is treated in a similar way.

We conclude that $\liminf \frac{d^2}{dt^2} V(u_n + h_n(t))_{t=0} < 0$; this contradiction with lemma 4 proves step 2.

Final Step. u_n is precompact in L_r , $2 < r < \ell(N)$.

Consider first the case $N \geq 3$. In this case u_n is bounded in $L_{l(N)}(\mathbb{R}^N)$. For $\varepsilon > 0$ and $\delta > 0$ given, say $\delta = \varepsilon$, let R and n_0 be as in step 2. If we let $A = \{x : |x| \geq R\}, A_n = \{x \in A : |u_n(x)| \geq \delta\}$ and $s = \frac{\ell(N)}{r} > 1$, then for $n \geq n_0$ we have

$$\int_{A_n} 1 \cdot |u_n(x)|^r dx \le (\operatorname{meas}(A_n))^{\frac{1}{s'}} \left(\int_{A_n} |u_n(x)|^{\ell(N)} \right)^{\frac{1}{s}}$$

and

$$\int_{A_n^c \cap A} |u_n(x)|^r dx \le \delta^{r-2} \int_{A_n^c \cap A} |u_n(x)|^2 dx$$

and this proves the final step in the case $N \geq 3$. If N = 2 we notice that $H^1(\mathbb{R}^2) \subset L_r(\mathbb{R}^2)$ for $2 \leq r < \infty$ and the rest goes as in the case N = 3 and theorem I is proved.

Proof of theorem II. We may assume $m_0 = 1$. Let v_n be a sequence of functions satisfying the following conditions:

$$\int_{\mathbb{R}^N} v_n^2(x) dx = \lambda, \int_{\mathbb{R}^N} |\operatorname{grad} v_n(x)|^2 dx o 0 \quad ext{and} \quad |v_n|_{L_\infty} o 0.$$

For instance, take v_n to be radial and defined by $v_n(r) = \varepsilon_n$ for $0 \le r \le n-1$, $v_n(r) = 0$ for $r \ge n$ and linear in the rest and choose ε_n properly. Define $u_n(x) = v_n(\tau_n x)$ where

$$\tau_n^N = \frac{1}{\lambda} \int_{\mathbb{R}^N} G(v_n(x)) dx;$$

with this definition we see that u_n is admissible and $V(u_n) \to 0$ because $\tau_n \to 1$ and this shows that $\inf V(u) \le 0$ and that the condition $\inf V(u) < 0$ is necessary for precompactness of minimizing sequences, modulo translation in the x variable.

Next we show it is sufficient. Let u_n be a minimizing sequence and α_n , α , γ_n and $\overline{\varphi}_n$ as in the proof of step 1 in theorem II; the first thing to be noticed is that u_n satisfies the assumptions of lemma 1 because, if not, u_n would converge to zero in $L_r(\mathbb{R}^N)$, $2 < r < \ell(N)$ and this would imply $\liminf V(u_n) \geq 0$ and this is a contradiction. So, passing to a subsequence if necessary and making a translation in the x variable, we may assume that $u_n \to u \not\equiv 0$ in $H^1(\mathbb{R}^N)$ and then, by theorem II, $u_n \to u$ in L_r , $2 < r < \ell(N)$. Next we notice that V(u) < 0 because

$$\int_{\mathbb{R}^N} |\mathrm{grad}\, u(x)|^2 dx \leq \liminf \int_{\mathbb{R}^N} |\mathrm{grad}\, u_n(x)|^2 dx$$

and

$$\int_{\mathbb{R}^N} F(u_n(x)) dx \to \int_{\mathbb{R}^N} F(u(x)) dx.$$

Moreover, since $-\Delta u + f(u) + \alpha g(u) = 0$ we conclude that $\alpha > 0$ because, otherwise, Pohozaev's identity would imply $V(u) \geq 0$. We make the decomposition $g(u) = 2u + g_1(u)$. If we multiply both sides of the equality

$$-\Delta(u_n+\gamma_n\overline{\varphi}_n-u)=f(u)-f(u_n)+\alpha(g(u)-g(u_n))+(\alpha-\alpha_n)g(u_n)-\gamma_n\overline{\varphi}_n$$

by $(u_n - u + \gamma_n \overline{\varphi}_n)$ and integrate we get

$$0 \leq \int_{\mathbb{R}^{N}} |\operatorname{grad}(u_{n}(x) - u(x) + \gamma_{n}\overline{\varphi}_{n}(x))|^{2} dx + 2\alpha \int_{\mathbb{R}^{N}} (u(x) - u_{n}(x))^{2} dx \leq$$

$$\leq \int_{\mathbb{R}^{N}} [(f(u) - f(u_{n}))(u_{n} - u + \gamma_{n}\overline{\varphi}_{n}) +$$

$$+ \alpha \gamma_{n} (g_{1}(u) - g_{1}(u_{n}))\overline{\varphi}_{n} + (\alpha - \alpha_{n})g(u_{n})(u_{n} - u + \gamma_{n}\overline{\varphi}_{n}) -$$

$$- \gamma_{n} (u_{n} - u + \gamma_{n}\overline{\varphi}_{n})\overline{\varphi}_{n}|dx .$$

Taking in account the growth assumptions and that $u_n \to u$ in $L_r(\mathbb{R}^N)$, $2 < r < \ell(N)$, we can show that the right hand side of this inequality tends to zero. Let us consider, for example, the term $\int_{\mathbb{R}^N} (f(u) - f(u_n))(u_n - u) dx$; from the growth condition H_2 we get

$$|(f(u) - f(u_n))(u_n - u)| \le k_1(|u|^{q-2} + |u_n|^{q-2} + |u|^{p-2} + |u_n|^{p-2})(u_n - u)^2$$

since $|u(x)|^{q-2}$ is bounded in $L_s(\mathbb{R}^N)$, $s = \frac{l(N)}{q-2}$, and $|u_n(x) - u(x)|^2$ tends to zero in $L_{s'}(\mathbb{R}^N)$,

$$s' = \frac{l(N)}{l(N) - q + 2}, \quad 1 < s' < \frac{l(N)}{2},$$

we see that the integral

$$\int_{\mathbb{R}^{N}} |u(x)|^{q-2} |u_{n}(x) - u(x)|^{2} dx$$

tends to zero. The other terms can be treated by similar arguments we conclude that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and this proves theorem II.

Proof of theorem III. Let u_n be a minimizing sequence; such a sequence satisfies the assumption of lemma 1 because, if not, u_n would converge to zero in $L_r(\mathbb{R}^N)$, $2 < r < \ell(N)$, and the constraint would be violated. Let α_n , α , γ_n and $\overline{\varphi}$ as in the proof of step 1 in theorem II. By theorem I and passing to a subsequence if necessary, we can assume $\alpha_n \to \alpha \ge 0$, $u_n \to u \not\equiv 0$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in L_r , $2 < r < \ell(N)$. If $\alpha > 0$ the argument given in Theorem II shows that $u_n \to u$ in $H^1(\mathbb{R}^N)$; however, if $\alpha = 0$ the same argument gives only that grad $u_n \to \operatorname{grad} u$ in $L^2(\mathbb{R}^N)$ and some extra work is needed to get convergence in $H^1(\mathbb{R}^N)$. In order to get that all we have to show is $|u|_{L_2}^2 = \lim |u_n|_{L_2}^2$. By contradiction, suppose $|u|_{L_2}^2 < \lim |u_n|_{L_2}^2$ (we can pass to a subsequence if necessary); then $\int_{\mathbb{R}^N} G(u(x)) dx < \lambda < 0$. Suppose first $N \ge 3$.

Defining $\sigma^N = \lambda/\int_{\mathbb{R}^N} G(u(x)) dx$, and $v(x) = u(\frac{x}{\sigma})$ we see that $0 < \sigma < 1$, v is admissible and then $V(u) \leq V(v)$, that is,

$$\begin{split} &\frac{1}{2}\int_{\mathbb{R}^N}|\operatorname{grad} u(x)|^2+\int_{\mathbb{R}^N}F(u(x))dx \leq \\ &\leq \frac{\sigma^{N-2}}{2}\int_{\mathbb{R}^N}|\operatorname{grad} u(x)|^2dx+\sigma^N\int_{\mathbb{R}^N}F(u(x))dx \end{split}$$

Moreover, since $-\Delta u = -f(u)$, we have

$$\frac{N-2}{2} \int_{\mathbb{R}^N} |\operatorname{grad} u(x)|^2 dx = -N \int_{\mathbb{R}^N} F(u(x)) dx$$

and then

$$\left(\frac{1}{2} + \frac{2 - N}{2N}\right) \int_{\mathbb{R}^N} |\operatorname{grad} u(x)|^2 dx \le \left(\frac{\sigma^{N-2}}{2} + \frac{(2 - N)}{2N}\sigma^N\right) \int_{\mathbb{R}^N} |\operatorname{grad} u(x)|^2 dx.$$

This implies grad $u(x) \equiv 0$ which is a contradiction. If N = 2 we have

$$\int_{\mathbb{R}^N} F(u(x)) dx = 0$$

and this shows V(u) = V(v), hence V has a minimum at v and then $-\Delta v + f(v) = \beta g(v)$. Using Pohozaev's identity again we get $\beta = 0$ and then $-\frac{1}{\sigma^2}\Delta u + f(u) = 0$; this implies $\Delta u \equiv 0$ and this is a contradiction. So theorem IV is proved.

Remark. If $\alpha = 0$ and N = 1 the argument above fails. So, in the case N = 1, we are able to prove theorem IV provided $\alpha > 0$. This condition is verified if either the only solution of $-u_{xx} + f(u) = 0$, $u \in H^1(\mathbb{R})$, is $u \equiv 0$ or V assumes negative values on the admissible set.

Proof of theorem IV. Let u_n be a minimizing sequence. As before, u_n satisfies the assumptions of lemma 1 and then, passing to a subsequence and making translation in the x variable, we can assume $u_n \to u \not\equiv 0$ in $H^1(\mathbb{R}^N)$. From theorem II we conclude u satisfies the constraint and this together with the inequality $V(u) \leq \liminf V(u_n)$ gives $u_n \to u$ in $H^1(\mathbb{R}^N)$ and theorem V is proved.

Acknowledgement

The authors acknowledges Prof. O. Kavian for important conversation.

References

- [1] Pohozaev, S.I., Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$. Sov. Math. Doklady 5, 1408-1411 (1965).
- [2] Strauss, W.A., Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149-162 (1977).
- [3] Lions, P.L., The Concentration Compactness Principle in the Calculus of Variations. Ann. Inst. H. Poincaré, Anal. Non Linéare, sec A, 1 (1984), Part I 109-145, Part II 223-283.

[4] Berestycki, H. and Lions, P.L., Nonlinear Scalar Fields Equations, Part I, Arch. Rat. Mech. Analysis 82, 1983, n^2 4, 313-345.

- [5] Berestycki, H., Gallouet, Th., Kavian, O., Equation des Champs Scalaires Euclidiens Nonlineaires dans le Plan, C.R. Ac. Sci. Paris, serie I, Maths, 297 (1983), n^{O} 5, 307-310.
- [6] Coleman, S., Glazer, V. and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations; Comm. Math Phys 58(2), 211-221 (1978).
- [7] Cazenave, T., Lions, P.L., Orbital Stability of Standing Waves for Some Nonlinear Schrödinger Equations, Comm. Math. Phys. 85, 549-561 (1982).
- [8] Brezis, H., Lieb, E.H., Minimum Action Solutions of Some Vector Field Equations, Comm. Math. Physics, 96 (1984), n^o 1, 97-113.
- [9] Gidas, B., Ni, W.N., and Nirenberg, L., Symmetry and Related Properties via the Maximum Principle, Comm. Math. Phys., 68 (1979), 209-243.
- [10] Lieb, E.H., On the Lowest Eigenvalue of the Laplacian for the Intersection of Two Domains, Invent. Math., 74 (1983), n^o 3, 441-448.
- [11] Lions, P.L., Solutions of Hartree Fock Equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97 (1987).
- [12] Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

Orlando Lopes IMEC-UNICAMP 13081, Campinas, SP, Brasil